The Living with Monuments Project is a joint venue between researchers in the Universities of Southampton, Leicester, Ghent and Cambridge, Allen Environmental Archaeology and the National Trust. It is funded by the Arts & Humanities Research Council with support in kind from the National Trust and the University of Ghent.

The project’s aim is to redress a critical imbalance in our knowledge of life and cultural landscapes during the Neolithic and Early Bronze Age (c.4,000-1500 BC). Accounts of these periods are dominated by interpretive frameworks devised to explain the creation of ceremonial and funerary monuments, which form the most visible and tangible part of its archaeological record in many regions. By contrast, knowledge of the character of contemporary settlement and other non-monument focussed activity lags behind. The project will redress this imbalance through a coherent and innovative programme of targeted fieldwork and reassessment of existing data within one landscape that is famed for its monumental architecture: that of the Avebury region in Wiltshire.
Contents

1. Introduction
2. Background
3. Research aims and Objectives
4. Excavation Results
5. Discussion
6. Conclusions
7. Acknowledgements
8. Bibliography
1. Introduction

The fieldwork outlined in the following report represents part of the second summer season of fieldwork of the AHRC-funded Living with Monuments Project (LMP). The LMP developed out of an earlier incarnation under the title of the Between the Monuments Project, which between 2007-2015: investigated an intensive Neolithic and Early Bronze Age artefact scatter bisected by the line of the West Kennet Avenue – the so-called West Kennet Avenue occupation site (Gillings et al. 2014, 2105); evaluated more diffuse Neolithic occupation traces in Rough Leaze, to the east of Avebury (Pollard et al. 2012); and undertook surface collection on the Foot of Avebury Down (Gillings et al. 2014). In its first season the LMP excavated the extensive lithics scatter on the Foot of Avebury Down revealing a dense scatter of worked flint of late Mesolithic to Early Bronze Age date along with Neolithic pits and structural traces (Gillings et al. 2017). During the 2018 summer season the project investigated the buried soils and alluvial deposits in Butler’s Field, immediately west of Avebury henge, as well as the potential flint extraction site on Knoll Down. It is this latter fieldwork that is reported here.

The aim of the Living with Monuments Project is to redress a critical imbalance in our knowledge of life and cultural landscapes during the Neolithic and Early Bronze Age (c.4,000-1500 BC). Accounts of these periods are dominated by interpretive frameworks devised to explain the creation of ceremonial and funerary monuments, which form the most visible and tangible part of its archaeological record in many regions. By contrast, knowledge of the character of contemporary settlement and other non-monument focussed activity lags behind. This project will redress this imbalance through a coherent and innovative programme of targeted fieldwork and reassessment of existing data within one landscape that is famed for its monumental architecture: that of the Avebury region in Wiltshire.

The specific questions to be addressed are:

(1). Can we develop a detailed understanding of the extent, scale, density, character and tempo of human settlement in the core area of the Avebury landscape during the Neolithic and Early Bronze Age?
(2). What was the relationship between landscape occupation and monument building, both in terms of how monument building impacted on the scale and composition of settlement (e.g. drawing people and resources into the region), and the way that settlement imparted a history to places that could lead to subsequent monumentalisation?
(3). How was the process of living within this landscape enacted in relation to natural phenomena such as the distinctive local sarsen stone spreads, woodland, other vegetation regimes, springs, streams and rivers?
(4). Can we provide, through the mapping of sedimentary deposits and the establishment of fine-grained palaeo-environmental sequences, robust estimates as to the likelihood of where well-preserved traces of prehistoric activity might be buried or masked?
(5). In order to overcome the perception of Neolithic and Early Bronze Age settlement and other routine practices as ephemeral and essentially passive and static compared to the active and dynamic practices of monument building, can we generate diachronic accounts that foreground the social complexities of lived life (networks, politics, mobilities, identity formation, etc.)? Essentially, can we be more ambitious in the way we engage with such evidence?
(6). Linked to the above, how can a regional study of this kind contribute to the development of widely-applicable methodologies and interpretive frameworks with which to interrogate the often intractable traces of settlement during these periods?

There exists a close tie with agenda items identified in the recent Research Framework for the Stonehenge, Avebury and Associated Sites World Heritage Site (Leivers & Powell 2016), specifically agenda items C.2 and C.3 which relate to better understanding of the scale, tempo, duration and
composition of Neolithic settlement within the WHS, and the relationship between settlement and monuments.

The LMP seeks to characterise settlement in the Avebury landscape in its broadest sense. One aspect of this approach is to investigate the full range of non-monumental activities that are represented in the landscape. Limited observations made during 2004 suggests Knoll Down, located just beyond the western edge of the WHS within Avebury parish (centred on SU0739 6931; Figure 1), represents one of the best contenders for a flint extraction site within this landscape. The site has the potential to inform us of the range of activities that took place outside of the immediate vicinity of the core monument complex. It will also provide baseline data for flint extraction assemblages, which represents important comparanda for the ploughsoil assemblages across the WHS, some of which may also relate to primary flint extraction.

![Figure 1: Location of Knoll Down and the excavation trenches](image)

Although it has been recognised for a long time that much of the worked flint found within the region’s Neolithic and Bronze Age sites was likely procured locally (e.g. Smith 1965), there has been little work tracing specific locations where flint extraction took place. Thomas highlighted ‘increasing evidence’ for flint extraction in locations to the north and east of Avebury, notably on Hackpen Hill (Avebury Down) and further afield on the Aldbourne Downs; and considers that procured material from here was ‘carried or exchanged into the Thames Valley, the Cotswolds and Mendip’ (1999, 211-2). Work by the Project on Avebury Down during 2017-18 seems to confirm this as one flint source, with dense, debitage-rich scatters being present along the mid-slope overlooking Avebury (Gillings et al. 2017).

2. Background
**Topography and geology**

Knoll Down is located 2.9km WSW of Avebury, bordered to the south by West Down, and to the west by Cherhill Down. The knoll sits atop the easterly end of a ridge leading to Cherhill Hill and the Iron Age hillfort of Oldbury Camp. The ground slopes away from the knoll to the north, east and south, with the Windmill Hill causewayed enclosure being clearly visible to the north-east, and Silbury Hill to the east. The solid geology of the area comprises the junction between the upper Lewes Nodular Chalk Formation and the lower New Pit Chalk Formation (BGS).

**History of investigation**

Records in the Alexander Keiller Museum, Avebury, show that scatters in the vicinity of Knoll Down had been discovered and partially investigated by C.T. Barker during the early 1980s. One of the sites corresponds with that targeted for investigation in 2018, comprising a dense surface scatter of worked flint eroding out of the eastern slope of the knoll where it is bisected by a public footpath.

During 2002-3, Jude Currivan undertook geophysical survey and surface collection within the arable field on the north side of the Down as part of PhD research (Currivan 2004). This work identified a geophysical anomaly which was thought to be a curvilinear ditch and potentially part of a causewayed enclosure (Figure 2). In response to this survey, in August 2004 a limited excavation was undertaken by Jude Currivan with Mark Gillings and Joshua Pollard in order to evaluate the anomaly. One trench cut along the edge of the arable field adjacent to the wooded knoll revealed that the geophysical anomaly was generated by a seam of flint nodules outcropping on the slopes of the knoll. At one point this had been dug into in order to extract flint nodules, most likely during the Neolithic given the presence of a chisel arrowhead, other worked flint and animal bone within the fill of the small extraction pit (Figure 3). The correlation here of an unusual density of surface flint with an outcropping seam was taken to indicate that the site likely represents a nodule extraction and flintworking site.

**HER data and archaeological setting**

Two round barrows and two ring ditches lie within 150m to the south of the site (Figure 4). A series of linear earthworks criss-cross the broader area of the site. Most of these are thought to be related to prehistoric field systems, including a north-south linear earthwork (MW18020) which runs directly through the excavated area and was investigated within Trench 2. The flint scatter itself is bisected by the line of the ‘Old Bath Road’, running from Beckhampton to Cherhill. Observations in 2004 suggest the latter makes use of a very substantial linear earthwork, with a bank on the northern side, the form of which is best appreciated to the north-west of the copse within which the lithic scatter lies.
Figure 2: Plot of a partial resistivity survey of Knoll Down (From Currivan 2004, Figure 12.13)

Figure 3: Possible flint extraction pit under excavation in August 2004
Figure 4: HER records in the vicinity of the site

3. Research Aims and Objectives

The aim of the fieldwork was to determine whether prehistoric flint extraction and working took place on Knoll Down. Specific objectives were:

- To locate traces of flint extraction and any associated activity.
- To define the extent, date and character of flint working on the site.
- To define the character of flint extraction on the site (i.e. pits or drift mining).
- To understand the environmental setting within which flint extraction and working may have been set.
- To contributing to the development of a more rounded understanding of the range of non-monument related activities taking place in the Avebury region during the Neolithic and Bronze Age.
4. Excavation Results

Methodology
The main trench and its associated test pits were located to investigate the extensive surface scatter of worked flint that had been identified eroding out of the footpath that traverses the ridge of the knoll. The methodology followed that employed for investigating scatters by the Project during work on the West Kennet Avenue occupation site (Gillings et al. 2014, 2015) and the Foot of Avebury Down (Gillings et al. 2017). Involving first stage hand-excavation of topsoil/soil layers on a one-metre grid, this affords equal attention to both ‘surface’/soil artefact scatters and sub-soil features; rather than the routinely-employed strategy of machining off topsoil/ploughsoil. It recognises that much of the record of activity is ‘locked’ within artefact scatters; that cut features likely represent exceptional events and need not register the totality of presence (i.e. all occupation or activity phases); and therefore that there is a necessity to integrate surface and sub-surface traces.
Excavation took place over a period of three weeks during late July and early August 2018 in parallel to fieldwork being conducted at Butler’s Field.

Prior to the excavation the scatter was visible on the footpath running through the knoll, and amongst the leaf litter to the south of it within the wooded slope of the knoll. In order to investigate the scatter a 9 x 2m trench (Trench 1) orientated NW-SE was laid out, the size and orientation of which was constrained by the footpath to the north and the trees within the wooded area (Figure 5). A second trench measuring 1 x 5m (Trench 2), orientated east-west, was excavated to the west of Trench 1 to investigate a north-south aligned linear earthwork, with the principal aim being to investigate the potential for the scatter to be preserved in a buried soil beneath its bank (Figure 6). The excavation of Trench 1 quickly revealed variation in density within the scatter, which tailed off in density downslope to the south-east. In response to this, a series of eight 1x1m test pits were excavated across the area to define the limits of the scatter.
The basic excavation methodology involved the excavation of the topsoil in a series of 1m squares with all soil being hand excavated and sieved through a 10mm mesh. A bulk sample of 10 litres was taken from the middle of each square to be wet sieved for the retrieval of microdebitage. The only areas in which this methodology was not followed was in the bank makeup and ditch fills within Trench 2 where excavation followed a standard single context recording system.

**Trench 1 and Test Pits**

Across Trench 1, and all the test pits, the soil sequence was a worm- and root-sorted highly friable mid dark brown silty loam topsoil (context 101) directly overlying bedrock. The soil was riddled with roots from the many trees in the area, which had also heavily fractured the upper surfaces of the chalk bedrock. The depth of the topsoil was a uniform 0.1m, but thinned to 0.05m in Test Pits 5 and 6 to the south-east. No features were identified beneath the topsoil within Trench 1 or any of the test pits.

*Figure 7: Trench 1 after excavation*
As the excavation of squares within Trench 1 proceeded it soon became clear that there was a marked drop off in the density of worked flint downslope towards the south-east end of the trench. This fall off in density was confirmed by the most south-easterly test pits TP4 and TP6. Test Pits 5 and 7 also confirmed that the density falls of towards the north-east and south-west. Therefore, whilst the absolute edge of the scatter has not been identified, the limits of its core density has been identified, with its high point lying at the northwest end of Trench 1.

More broadly, it was clear that the scatter is particularly dense with preliminary counts of worked flint in the densest squares at the top of Trench 1 being in the region of 1400 worked flints per m², and those from the least dense squares at the bottom end of the trench still being 750 worked flints per m². These figures far exceed those known from any other prehistoric site within the Avebury landscape.

**Trench 2**

Trench 2 was orientated perpendicular to a north-south aligned linear earthwork. Excavation of the earthwork revealed it to consist of a bank (202) flanked by ditches [204] and [205]. The bank stood approximately 3.0m wide and 0.5m high. It was covered by topsoil (201) and was comprised of a light grey brown silty loam with frequent inclusions of chalk and worked flint. The flint was clearly derived from the surrounding scatter and indicates that the construction of the bank post-dates flint working activities on the site. On its west side the bank was flanked by ditch [205] which was steep-sided and flat bottomed; measuring 0.6m in width and 0.16m in depth. The ditch was filled by a mid-brown silty loam (206) with frequent inclusions of chalk. On its east side the bank was flanked by larger ditch [204], which measured 2m in width and 0.35m in depth. The sides of this ditch were at a shallower angle than those of ditch [205] and its base was undulating with their being suggestions that it had been substantially recut on its eastern side. Whether or not this was the case was difficult to tell as the fill (203) of the ditch had been heavily disturbed by roots and rabbit burrows. However, it was clear that bank (202) overlay fill (203) of ditch [204] by almost one metre. This indicated that the bank was initially formed from the material dug out of ditch [204], which was perhaps recut to redefine the earthwork, and was then subsequently enhanced by the digging of a new ditch [205] on its west side, with the new bank material partially covering the fill of ditch [204]. This means that bank makeup (202) was comprised of multiple episodes deposition, but it was not possible to identify these layers due to the degree of disturbance of the bank by root and burrowing. The degree of disturbance also meant that it was not possible to distinguish whether there was a buried soil beneath the bank. Thus no sample of the lithic scatter could be identified beneath the bank.
5. Discussion

The scatter
The impression gained during the excavation was that the assemblage consists of a single type of chalk-derived flint of homogenous appearance. At this initial stage it would also appear that there are very few tools within the assemblage, with only three awls and a scraper identified to date. Given that the assemblage is estimated to number in the region of 20,000 artefacts, the frequency of retouched implements is extremely low. Analysis is required to further understand the character of the flint working represented in the scatter but initial impressions are that the character of working is uniform, and therefore that the scatter likely represents a single episode of activity rather than a long-term palimpsest.

When considered in relation to the homogeneity of the raw material, the character of the assemblage is in keeping with that expected from an assemblage associated with flint extraction. In other words, the assemblage represents the initial working down of nodules, and perhaps the production of cores or blanks to be taken away. If tools were produced, they were clearly removed for use elsewhere rather than being used and discarded on site.

Although further analysis of the lithic assemblage will provide a more detailed understanding of the site, at present the character of the assemblage, the identification of the flint seam outcropping in the vicinity of the site, and the extraction pit excavated in 2004 provide clear indications that the site is primarily a flint extraction site. Whilst it would seem most likely that the site is Neolithic in date, it is not currently possible to be more specific due to the lack of diagnostic elements within the lithic assemblage.
The presence of flint within the bank makeup indicates that the bank post-dates the flint extraction on the site. Beyond that, dating evidence for the construction of the bank was limited to the recovery of several sherds of pottery from context (202). Analysis of these sherds will provide firmer evidence for the possible date of the bank but on present evidence it seems likely to be part of the later prehistoric fieldsystems which occur in the broader area around the site.

6. Conclusions

The excavation on Knoll Down has been successful in enhancing our understanding of the site, and particularly in defining it as a flint extraction site. Analysis of the collected assemblages will provide detail on the character of flintworking on the site and to some extent its date, although the latter is likely to be rather broad in its resolution. Preliminary characterisation shows the material has been generated from a reasonably controlled process of reduction, but with an emphasis on flake rather than blade/narrow flake production. Lacking the expedient and ad hoc character of 2nd millennium BC assemblages, the bulk of probability is that it dates to the middle or late Neolithic.

The absence of sub-surface features associated with the flint extraction within the excavated area meant that obtaining further insight into the character of flint extraction, and the environmental context within which extraction was taking place, was not possible. Future work may, however, be able to identify extraction pits. The site represents rare evidence of flint extraction occurring within one of the major Wessex monument complexes. As such, it provides important insight into the broader range of activities that took place within such landscapes outside of moments of monument construction and ritual observance.

7. Acknowledgements

We wish to thank Roger Charlton for allowing us to undertake fieldwork on his land. The work was funded by the Arts and Humanities Research Council (AHRC) and the Universities of Southampton and Leicester.

The summer 2018 fieldwork team comprised of: Ben Chan, Sarah Jeanette, Beth Linscott, Nick McDonald, Tom Rose, Jake Rowland, Cory Stade, Gwion Williams, Catherine Tappenden and Amy Reid.

8. Bibliography


**Authorship**

Ben Chan and Joshua Pollard
with Jake Rowland, Mark Gillings and Stu Eve.